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A general approach towards the study of stability of motion of a vehicle on 
wheels with pneumatic tires used in [1] for the case of a rectilinear, unpenur- 

bed motion, is extended fo the case of a curvilinear motion along a path of 

sufficiently small curvature. 

1. Statemoat of the problem, We assume that the conditions under which 
the theory of rolling of a pneumatic tire wheel developed by Keldysh in r2] is valid, hold 

in the present case. According fo this theory the roiling of the wheel takes place with- 
out slipping, while the deformation of the tire is small and characterized by three para- 

meters: the quantity 6 describing the lateral displacement of rhe center of the area of 

contact relative to the trace of the middle plane of the wheel on the road surface, the 

angle X of inclination of the middle plane of the wheel and the angle cp of torsion of 
the tire. The fact that the tire undergoes small deformation and the condition of roll- 

ing without slipping, impose definite restrictions on the class of motions under consider- 

ation. In particular, the path curvature must be small and the velocity of motion must 
not become excessive. 

Let us denote by Q1, 42,..., Qn the generalized coordinates of a vehicle on m pneum- 
atic tire wheels and introduce quantities determining the position of the i,th wheel 
(i = 1, 2,..., n:). Let LCiy yi be the Cartesian coordinates of the point Ki of inter - 

section of the steepest line passed along the middle 

plane of the wheel through its center with the 

plane of the road, Ui the angle formed by the 
trace of the middle plane of the wheel on the 

road and the Ox-axis of the fixed Oxyz coordi- 
nafe system the x@-plane of which coincides 

with the plane of the road while the Oz-axis 

points upwards, and Xi the angle between the 
Oz -axis and the mean plane of the wheel The 

Fig, 1. 
coordinates Xi, yf, f~; and Xi introduced here are 

known functions of the generalized coordinates 

Q19 &lst*.., %I. 
At first we assume that the motion of ihe vehicle is given. This means that Xiv yi, Bi, 

and Xi are known functions of time. Then by the Keldysh theory the deformation of 
the pneumatic tire can be found at any instant on the basis of the following conditions: 

11 the tangent to the line of rolling of the tire coincides with the axis of the area of 
contact and 
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2) the curvature of the line of rolling is determined uniquely by the deformation of 
the tire. 

In accordance with the notation of Fig, l(i is the trace of the middle plane of the 

wheel, 2 is the line of roflirg, 3 is the axis of the area of contact and C# is its center) 

these conditions lead to the relations 

&xi* sin(& + cpi) - dyi* COS(0i i. cpi) = 0 (1.1) 

fit-l = atEi - @fqf - YfXi f1.3 

Here 2f*, Yi* are the coordinates of the center of the area of contact coanected with 
St, yt respectively, by 

Xf* = Xi -/- ft sin Bi, Yi * = yi - g1 cos et (1.3) 

where fif is the radius of curvature of the line of rolling and Ui, fit and yi are constant 
coefficients called the kinematic parameters of the ith wheel determined hy experim- 
ent. Using (1.3) and neglecting the terms of the second and higher order of smallness we 

obtain, in place of (1. l), 

&Q sin(0f + cpf) - dyf COS (Of $ qf) + d$f = 0 (1.4) 

By definition, the curvature of the plane curve Rf-r = d (&Jr f cpt) / dstt where ds* 
is the arc element of the line of rolling of the i th tire. Inserting this into (1.2) we 

obtain 
(1.5) 

Equations (1.4) and (1.5) represent the required relations frem which the deformations 
fi and cpf can be found provided that the motion of the tire wheel is known. Having 

found the Qef~mat~o~ we can now determine the forces acting on the ith wheel. Acc- 
ording to the Kefdysh theory these forces are equivalent to the transverse force Fi app- 

lied at the point Kt, the moment A.!!,,, relative to the vertical axis and the moment 
J”xi relative to the horizontal axis parallel to the middle plane of the wheet More - 
over we have 

Fi = @fgi + UfNfXit Me, = bicpl, Mxi = - OiNigi - FiNiXi (l-6) 

where Ni denotes the load on the i th tire wheel, while ai, br , oi and pi are const- 
ant coefficients determined by experiment. 

2. Kinemrtfc rnd dynrmlc equation8 of motion. Let us divide (1.4) 
and (1.5) by dt. Eliminating si’ by means of the relation 

Si’ = x*i* cos (ei + cpi) f yz*’ si<(Bi -+- qpi) = 
= 5<cos (ei + cpi) + yi'sin (tilt + qi) - gig sin cpi + ei*fi cm Cpi 

and neglecting the terms of the second and higher order of smallness, we obtain the 
required kinematic equations of motion of the vehicle on pneumatic tire wheels along 

a curvilinear path 

~;sin (ei + rpi) - ~~cos(~* + fpi) 4 gi' = 0 (2-j) 
e: + rpp-(~~g~ - pIqpi - rixi) [X<cOs(er + pi)+ yl'sin(ei + cpi)l = 0 

W&I the deviations from a rectilinear translation taking place with the velocity V = 
= con& in the 0~ direction are small, the above equations reduce to the knOWn 
Keldysh @I equations. 
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Let now T = T (q, q’, t) be the kinetic energy of the vehicle the position of 

which is defined by n generalized coordinates Qj ( j= 1, 2, . . . . n), 91 = Qj (q, ., t) 
be the prescribed generalized forces applied to the sysiem and Kj = Kj (E, 9, 7 X 

the generalized forces governed by the deformation of the tires. To find the functions 

8, we first compute the virtual work done by the deforming forces 

6A = 5 1Fi (hi sin Oi - 6yi COS 0,) + Msi68i + Mxi6Xi] = 
i=l 

and from these we obtain 

Here the forces Fi and the moments Msi and L~I;:~ are given by (1.6). Having taken 
into account all the forces acting on the system including the reactions between the 

tires and the road. we obtain the required dynamic equations for the vehicle in the 

usual form 

------=Q1+Kf 
ctt ‘itj,’ &I, (; = i, 2,. . . , n) (2.3) 

where’ the generalized forces Rj are given by (2.2). Equations (2.3) together with (2.1) 
represent the equations of motion along a curvilinear path of a vehicle on pneumatic 

tire wheels. 

9. Strblllty of prrlpherrl motion. We begin the study of the stability 

of peripheral motion of a nehicle on pneumatic tire wheels by constructing equations 

describing its arnall deviations from the steady state motion. 
Let Oi = Vi” -+ Ol’,where 8;’ is the value of the angle tIIi on the unperturbed trajec- 

tory and Bi’ is a small deviation of ei from ei” . We replace the quantities Xi.9 yi’ by 

ui, T’i respectively, using the relations 

Xi* = Vi COSi 0i" + Ui sin eio, ?/i ’ = Vi sin 0: - Ui COS ei (3.1) 

where I’i = cot& is the longitudinal velocity component of the i th wheel during the 
peripheral motion of the vehicle and LL: is the transverse displacement velocity of the 

i th wheel (its magnitude is of the order of the other small quantities). Inserting (3.1) 
into (2.1) and linearizing with respect to the small quantities we obtain the following 
kinematic equations for the vehicle on pneumatic tire wheels when the deviations from 

its peripheral motion are smalls 

‘i + Ei’ + Viei’ + Vi’pi = 0 

Oi’ + ‘pi’ - UiViEi + &ViCpi + TiViXi = 0 (3.2) 

The dynamic equations of motion retain, in this case, their form (2.3). 
Similarly to the case of the steady state rectilinear motion, the equations describing 

small deviations from the peripheral motion can be simplified when either the velocity 
of motion Vi , or the values of the kinematic parameters ai, pi and yi are large. 

The case when the velocities of motion are large. hraccordance 
with the general theory [If the velocities vi are assumed large if the following 
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inequalities hold: 

Z>Zi (i=l,Z,...,m) (3.3) 

where 2 represents the least duration of the transient processes in the variables qi, q2: 

--*) qnt and ri is given by 

ri = 2 Re [/3iV, (1 + f/1 - Gz~ / /3i’)]-l 

When the motion is curvilinear, the velocities Vi should also be bounded from above. 

This follows from the assumption that .the deformations ji, ‘pi and Xi are small. 

Assuming that all these conditions hold and carrying out the reasoning analogous to 

that of [l] we find, that the region of slow motions is determined by 

8i’ + vi f da, / dsi = 0, Si$i - YiCpi - *ciXi - d0i /hi = 0 (3.4) 

where xi is a quasi-coordinate corresponding to the variable Ui 3 JQ . Eliminating 

Ei and cpi from (1. ‘7) and using the relations (3.4) we find 

Fi = ~ 8i’ - asiei’ - ~ Ui+ UsiSI, “(i = 1, 2, . . . , m) (3.5) 
* 

b. ’ 
iVfl_ = - -f- Ui - bi0i’p 

I 

A!$ = - ~0i’ + bli0i’ + phi - b,iXi 
1 t 

Here the positive coefficients akiand bki are connected with the parameters of the 

pneumatic tire by the relations 

ai 
a./3. 

ali = yy , U2i = * , 
@iTi 

a3i = x + GiNi 
1 

bli 
3.N. 

z-22, 
a&, 

9 
bai = - , 

9 
b3i = _bi(F + pi) 

Inserting the expressions (3.5) for the forces and moments into (3.1) we obtain the ex- 
pressions for RI. 

The case when rhe kinematic parameters are large. Thequantities 

air pi and Vi are assumed to be sufficiently large [l] if the inequalities (3.3) in which 
71 is defined by ri = (piVi)-l, hold. We introduce a small parameter p such that the 
relations 

Pi = a:, @i = pi’, PYi = yc, Eli = SZ?(Qi S 6,“‘) 

hold. Here a,“, g: and Y. ,’ are finite quantities and Qio are small quantities of the 
same order as the small deformations. We write the second group of the kinematic equ- 

ations (3.2) in the form 

p (8,” + Cpi’) = cz,“ViEi - p:ViCpi - rcVi”/,i - Rio 

With lo sufficiently small, we have a system of differential equations in which the 
highest derivative is accompanied by a small parameter. In the present case the varia- 

bles undergoing rapid variation are represented by the sums 6i’ f ‘pi. When /A -+ 0, 

a surface of slow motions appears in the phase space. This surface is stable with respect 

to the rapid motions and 

91 = = Xiisi - &Xi - (@iVi)-‘Qr (%ii = ai/Bi7 %l = Y&i> C3*V 
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where %i and %1 are the transverse creep coefficients, hold for this surface, Using 
(3.7) to eliminate vt from the first group of the kinematic equations we obtain 

t&t + Et + Vie,’ + Xl*V*Et - XsiVixi - fif-lpi = O (3.8) 

and inserting (3.7) into (1.6) we find 

Fi = a&i + 0iNtXi, hGi = -0rN& - P&LX~ (3.9) 

Mai = xribi5i - tifbi~i - bt @tvt)-‘Qi 

Thus in the present case when the kinematic parameters have large values, the equations 

of motion are represented by (2.3) and (3.8) and expressions (3.9) should be used in 
computing aj 

Equations (2.2). (2.3) and (3.5) or respectively (2.2). (2.3) and (3. a), can be regar- 

ded as an extension of the generalized transverse creep hypothesis [l] to the case of 

curvilinear motion. 

4, Exrmpler. 1. Stability of peripheral rolling of a pneumatic 

t i r e w h e e 1. We shall consider the case when the angular velocity Q, of the charact- 
eristic rotation of the wheel is kept constant, i. e. when an additional (rheonomic) 
constraint IO = const is imposed on the motion of the wheel. The Lagrangian function 
has the form 

2~ = rn(x.2 + yr) + A(P + x*) + 2oCX0* + rNxD 

Here N = mg is the weight of the wheel, A, C ate the diamettal and axial moments 
of inertia,respectively. a, y are the Cartesian coordinates of the center of the wheel, r 

is the distance between the center of the wheel and the point K (21, ~3, and the coord- 

inates of the latter are given by Zl=+Z-- r@nO, yI = II+‘xcose (4.1) 

Let the generalized forces be Qx = QY = Qe = Q, = 0. In accordance with the formulas 
(1.6) (2.2) and (4.1) the generalized forces Rj are given, by the following expressions 

R%ie= a Re( E + UN%) sin 8, R,, - - (at + UNX) cos 8 
= bq, Rx = - (or + d’)t - (P + ru)N~ 

The dynamic equations of motion of the wheel are 
m2” - (~5 + uN&iin 9 = 0, my” + (at + uNx)cos6 = 0 (4.2) 

~6” + QQ’- bq = O .4x”- oC6. + (ar + UN): - (r- ro- 0)iV~ = O 

Using (4.1) let us pass from the variables z’ and y’ to u and I’ by means of (3.1). 
Discarding the quantities of the second and higher order of smallness we find 

2’ co9 6” + v/ sin 0” = Y, 2’ sin 0” - y’ cos e” = lb -I- rx’ 
2” cos e* + y” sin e* 3 0, t” sin 8’ - y” cos 80 = U’ + rf* - Vh2 * 

where Q = 9” = const is the value of the angular velocity 6 during the perpheral 
motion of the wheel. Instead of (4.2) we obtain 

mu’ -f ma” - mVQ - aF, - oNx = 0, AfY+oCf-bq=O (4.3) 
AX” - oCW+(ar+cN)~-(r-ns-p)NX=O 

which, together with the kinematic equations 

u + ‘s’ + VW + KQ = 0, &2+8”+cp’- CCVE + gvq + YT’X = O (4.4) 

form a COI?Iplete system of equations for determining u, 6, X, 5 and cp. When the wheel 

is rolling along a circle of radius R I V / Q = or/ $2 , the steady state values I+, x0, 
EO and ‘p. (U” = Q1) satisfy the following equations: 
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+w-aE*idX*==Ox B-av&j+yY~@=Q 
@cQ - tar + umo -j” (r- ro- p)Nx* - 0 WI 

The conditions of existerrce of nonuiviaS solutions of (4.5) is fulfilled when the velocity 
has a unique value V = Vn, where 

Y$rr; * gr ia I? - PI + dW 
WY -I- aoN) (5Y + r’) - rlY fa t’ - p) - ral (4.6) 

Here d is the radius of inertia of the wheef, 
When v =I v, * we obtain a set of circutar motions of the wheel The tilt Xa of the 
wheel and the lateral deformation 2,) of the pneumatic tire are expressed in terms of 
the radius A = V, / P of the circumscribed circle by means of the relations 

The neural in (4-S) is always positive. The denominator is positive when a~ > 0 
(i- of.when uy < aN (3 - u) which may happen when the producr aN is large (nor- 
mally UB 0.5toO.7). the denominator buoomes zero when r = r*. Since the theory 

used here is applicable only whea the deformatkurs are 
small, we ought to lfmit oursehes to the values f < r,. 
Under these condfticms the quantity f~ is (as impeded by the 
~~~~~ of ttre posi~vmiess of Q and V. and by (4.7)) 
always positive. The quantity x0 is (as follows from (4.7)) 
always negative, The form assumed by the rol&rg pneumae 
tic tire wheel is shown on Fig, 2. 

To inspect the stability of motion we construct equations 
describjng small deviations of the wheel from rts steady 
state motion. Denoting the sma;LI deviations by a prim we 

obtain from (4.3) - (4.5) 

Fig. 2. 0” -t_ cp” - aVC’ + @Yg’ + TVx’ I 0 

These equations also describe the small devfations of the wheel from a rect%linear motionr 
the titter case regarded here as a particular case of the circrtlar motion. The character- 
istic equation of the system (4.8) can be written as 

(4.3 
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The zero root of (4.9) depends on the manifold of the steady state motions of the pneu- 
matic tire wheel. Indeed, the steady state values of the variables in (4.8) satisfy the 
KWiOIlS 

uo’$ V&l’=0 9 &’ = cpo’ = x0’ = 0 

and this implies that the steady stare motions form a one-dimensional manifold. Its 
physical meaning is reflected in the fact that the motion of the wheel may establish 

itself along a straight line in any direction. The stability of the manifold of the recti- 

linear motions is determined by the roots of the characteristic equation P (p) = 0. When 

v = VO (i.e. T = ~0) , the free term of the polynomial P @) vanishes. An additional 

zero root of the characteristic equation appearing under these conditions is due to the 

fact that when V = V. , a manifold of circular motions of the pneumatic tire wheel is 
generated. The stability of this manifold is determined by the roots of the following 

characteristic equatiom 
P~+~v~p’+lu,+bo+(al+~)rolPJ+B~o(CLo+~o)P2+ 
+ (a& - j30 + y1z, + alqlz)P + @Vo (Yo~o - Bo) = 0 

The set of circular motions of a pneumatic tire wheel is stable when the following 
inequality holds 

a1602 + &J% + %S12 + bo2BlS > 0 (4.10) 
al = al (b, + &‘I) Ial (kr- 1) + 1 - yk’l 

0, = (VI- vo) (~9, + b, + y. - v3 + al (aIbo - ~~OYO) 

aa = b. [a0 @,a, + b. -I- YO - P) i- 2a$0 - Vobol 

For a wheel with the following parameters: 
N -1o()kg a=20m* a=2.104kgm-l 

r = 0.5 m 6= iom-1 b = ioI kgm rad-1 

P = 0.i m ,,= i m-1 A =0.5 kgmsecr 

o- 0.6 m = 10kg m’lsec2 C =lkg m set? 

the inequality (4.10) holds and V, = 2.2 m/set. Thus the rolling of a pneumatic tire 
wheel along a circle takes place at a definite velocity V = v,, and the trace of the 

middle plane of the wheel is always parallel to the tangent to the circle. 

For comparison purposes we shall reconsider this problem using the Rocard’s transverse 
creep hypothesis Dj. According to this hypothesis the transverse creep acting on the 

wheel is accompanied by a transverse opposing force F = --a,V% - I#, where a, 

is the creep resistance coefficient Using these expressions we arrive at the following 
equations of motion for a pneumatic tire wheel 

mu + mq” - mVS2 + a,V-lu + a,W = 0, AW + 6&y = 0 

AX” - ~20’ - r Nx - a,rV-lu - a&’ = 0 

When the motion is steady state, the variables u. and ~0 are given by 

mV2Q SW (C + mr2) 
f&l=-, 

ac x0= - @N (4.11) 

From this it follows that according to the Rocard hypothesis a pneumatic tire wheel can 

move along a circle with any velocity V, and the trace of the middle plane of the circle 
forms a constant angle with the tangent to the circle 

E = a&g $- = 
mVP 

arct.g - 
=c 

The stability of motion of the wheel is determined by the roots of the characteristic 
equation 
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P+ ac 
An’,,,* pl+ C--rNA p + ac C (C + ;;T; - r=NA = o 

The motion of a pneumatic tire wheel is stable, when the inequality 

V1> rlNii/C (C - A) (4.12) 

holds. We see that the Rocard hypothesis gives a result which is intrinsically different 
from that obtained in accordance with the Keldysh theory. It is interesting to note that 
the rolling of a perfectly rigid wheel with classical nonholonomic constraints gives exa- 

ctly the same resuls In this case the equations of motion have the form 

A%” + t&x’ = 0, (A+ ,nr*)~“--(C+mr~)%‘-rNx=O 

From this it follows that the angle of inclination ‘L of the rigid wheel during its motion 

along a circle is 
x0 = - OS2 (C + mr2)/rN 

which agrees with (4.11). The stability of the manifold of the circular motions of the 
wheel is determined by the roots of the characteristic equation 

A (A + mP)p2 + dC (C + m?) - rNA = 0 

Consequently the roiling of a rigid wheel is conservatively stable when the inequality 

VP > PNAIC (C + mf? holds, and the latter inequality differs from (4.12) only in un- 
important details. 

2. Stability of a circular motion of an automobile. We investig- 

ate me motion of the simplest model of an automobile on identical pneumatic tire 
wheels. Let replace the wheels by the equivalent front and the near wheel and let the 

front wheels be turned to the left by a constant angle 9. We consider the case of high 

velocity motion, since in this case we can use (3.5) to calculate the forces and the 

moments. Using the notation employed in Fig. 3 we obtain the following equations of 

motion mul’ -j- 2az UV-* - ml,%” - mVQ + 2ai%’ - ri:-1%’ = - a@ 
clV-'ul + mk2%” $ c?V-‘%’ -?- Cl0’ = (d& - b) I$ 

c = 2a, + $1, cl = a2 (11 - 12) + 26, c2 = aI (l? - II) + 1 (a,& - b) 

where k is the radius of inertia of the automobile relative to the vertical axis passing 

through its center of mass. When the automobile moves in a circle, the steady state 

values ~1’ and 0 of the variables ul and b’ satisfy the following equations: 

2a?u,” - (c f mV2)Q = -atVQ, clulo + c,P = (a,l, - b)V$ 

which in turn yield 

ui” = MVq [aI (azZ- 2h) + mV2 (a,l,-- b)], !d 5 at?~~~V+ (4.13) 

n/r = [a,“P + 4a,b f c,mVa]-1 (4.14) 

Using (4.13) and the obvious relations us = 
l& + vg, we readily obtain 

Fig. 3. 

0 = fil V+ [al (a,l + 2b) + m V’ a)& -i b)l 

Let $2 > U and V > 0 . Then the second re - 
lation of (4.13) implies that the inequality 
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M$ > 0 must hold. Thus two cases of motion of an automobile in a circle are possible. 
(a) M > 0, $ > 0 when we have the usual motion illustrated on Fig.4a. 

(b) M < 0, ‘II) < 0 when we have the extraordinary motion depicted on Fig.4b. 

& 

(a) 

r; 

4 
Fig. 4. 

In the latter case the front wheels are turned in the direction opposite to that in which 

the automobile is turning (the possibility of such a motion of an automobile in a circle 
was found by A. A. Khachaturov in computation using an analog computer). By (4.14) 

this case arises when the inequalities 

are satisfied. The center of mass of the automobile is displaced towards the rear wheels 
and the velocity of motion exceeds some critical value k- =: )‘e. 

The stability of the manifold of motions of an automobile along a circle is determined 
by the roots of the characteristic equation mh’P’ -t m (2+/i’ + ci& + c.1) p -I- M = 0. 
Since the coefficients accompanying p are always positive, the motion of the automo- 

bile is stable whet M > 0. Consequently the usual mode of motion of an automobile with 

a blocked steering along a circle is always stable, and the extraordinary mode is always 

unstable. 
In conclusion we note that the study of the motions of the model under consideration 

using the Rocard transverse creep hypothesis yields the same qualitative result. This can 
be explained by the fact that, while in the first example the moment of the forces ari- 

sing from the torsion of the pneumatic tire during the rolling of a single pneumatic tire 
wheel is significant, in the second example the corresponding moments acting on the 

front and rear wheels do not influence the dynamics of the automobile to any appreciable 
extent 
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