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A general approach towards the study of stability of motion of a venicle on
wheels with pneumatic tires used in [1] for the case of a rectilinear, unpertur-
bed motion, is extended to the case of a curvilinear motion along a path of
sufficiently small curvature,

1, Statement of the problem, We assume that the conditions under which
the theory of rolling of a pneumatic tire wheel developed by Keldysh in [2] is valid, hold
in the present case, According to this theory the rolling of the wheel takes place with-
out slipping, while the deformation of the tire is small and characterized by three para-
meters: the quantity t describing the lateral displacement of the center of the area of
contact relative to the trace of the middle plane of the wheel on the road surface, the
angle X of inclination of the middle plane of the wheel and the angle @ of torsion of
the tire, The fact that the tire undergoes small deformation and the condition of roll-
ing without slipping, impose definite restrictions on the class of motions under consider-
ation, In particular, the path curvature must be small and the velocity of motion must
not become excessive,

Let us denote by gys 92s---» 9n the generalized coordinates of a vehicle on m pneum-
atic tire wheels and introduce quantities determining the position of the ith wheel
(i =1, 2,..., m). Let z;, y; be the Cartesian coordinates of the point K; of inter -
section of the steepest line passed along the middle
plane of the wheel through its center with the
plane of the road, 0; the angle formed by the
trace of the middle plane of the wheel on the
road and the (Qz-axis of the fixed Oxyz coordi-
nate system the 20y -plane of which coincides
with the plane of the road while the Oz-axis
points upwards, and X: the angle between the

Oz -axis and the mean plane of the wheel, The
coordinates Z;, y;, f;and %: introduced here are
known functions ot the generalized coordinates
1 a3y Gne

At first we assume that the motion of the vehicle is given, This means that z;, ¥;, 8;,
and y; are known functions of time, Then by the Keldysh theory the deformation of
the pneumatic tire can be found at any instant on the basis of the following conditions:

1) the tangent to the line of rolling of the tire coincides with the axis of the area of
contact and

Fig, 1,
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2) the curvature of the line of rolling is determined uniquely by the deformation of
the tire,

In accordance with the notation of Fig,1(7 is the trace of the middle plane of the
wheel, 2 is the line of rolling, J is the axis of the area of contact and £ is its center)
these conditions lead to the relations

* sin(8; + @) — dy,* cos(8; - ;) =0 (1.1)
Ri' = a8 — B — Vi (1.2

Here 2,*, Yi* are the coordinates of the center of the area of contact connected with
Zy, Y1 respectively, by

z,* = x; + §; sin §;, yi* = y; — E;cos 9 (1.3)
where R, is the radius of curvature of the line of rolling and @;, f; and y, are constant
coefficients called the kinematic parameters of the ith wheel determined by experim-
ent, Using (1, 3) and neglecting the terms of the second and higher order of smallness we
obtain, in place of (1,1),

dz; sin(9; + @1) — dy; cos (8; + ;) + dE; =0 (1.4)

By definition, the curvature of the plane curve R,-! = d (8; + ¢,) / ds;, where ds;
is the arc element of the line of rolling of the ¢th tire, Inserting this into (1.2) we

btain
o a8, + dog; — ds; (8 — B — vexs) = 0 (1.5)

Equations (1,4) and (1, 5) represent the required relations from which the deformations
¢ and @; can be found provided that the motion of the tire wheel is known, Having
found the deformations we can now determine the forces acting on the ith wheel, Acc-
ording to the Keldysh theory these forces are equivalent to the transverse force F; app-

lied at the point K;, the moment .M,, relative to the vertical axis and the moment
My, relative to the horizontal axis parallel to the middle plane of the wheel, More -
over we have

Fy= a8 + 0N Mei = b;;, Mxi = —o; V& — oVl (1.6)

where V; denotes the load on the {th tire wheel, while a;, by, Gy and p; are comst-
ant coefficients determined by experiment,

3, Kinematic and dynamic equations of motion, Let us divide (1.4)
and (1, 5) by d¢. Eliminating s," by means of the relation
st = 2% cos (8; -+ @) + y** sin (B, + @) =
= z;" cos (8; + @;) + y;"sin 8; + ¢;) — & sin ¢; + 6;°8; cos @,

and neglecting the terms of the second and higher order of smaliness, we obtain the
required kinematic equations of motion of the vehicle on pneumatic tire wheels along
a curvilipear path
xi sin (8 + sz) - .zf't cos (Bé + q}z) -+ g’l =0 (2 i)

8" + @i — (ks — Bis — Tats) (247 cos By + @) + yi'sin (B + @) = O
When the deviations from a rectilinear translation taking place with the velocity V =
= const in the Qy direction are small, the above equations reduce to the known
Keldysh [2] equations,
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letnow I' = T' (g, ¢, ?) be the kinetic energy of the vehicle the position of
which is defined by n generalized coordinates ¢; ( J=1, 2, ..., n), @; = Q; (g, ¢", ?)
be the prescribed generalized forces applied to the system and R; = R; (8, o xg
the generalized forces governed by the deformation of the tires, To find the functions
R; we first compute the virtual work done by the deforming forces

84 = 2 lF‘l (Gxi sin Gi — 5y1 cos 6,) + Meiﬁei -+ MxiGXi] =

i=1
oy,
= legl{‘ 1( smB —Tq-—cose )—{—Me1 =, -{-M,{1 7, ]Gq,
and from these we obtam
m
oz, dy, a8, ox,

- A isinf, — — 0; My, =+ My, — 2.2
e gl[Fl( 72, sin 0; 7y coS ,)—%— 9% By, + My, qu] (2.2)

Here the forces F; and the moments My, and }{ «, are given by (1.6). Having taken
into account all the forces acting on the system including the reactions between the
tires and the road, we obtain the required dynamic equations for the vehicle in the

usual form

d oT ar .
7):--(;?]7__57;:0]+H =12,...,n) (23)

where the generalized forces R ; are given by (2.2), Equations (2, 3) together with (2,1)
represent the equations of motion along a curvilinear path of a vehicle on pneumatic
tire wheels,

3, Stability of peripheral motion, We begin the study of the stability
of peripheral motion of a nehicle on pneumatic tire wheels by constructing equations
describing its gmall deviations from the steady state motion,

Let§; = 0,° - 0,",where 8,° is the value of the angle 0; on the unperturbed trajec-
tory and 8 is a small deviation of 0; from 0,° . We replace the quantities z;’, y;* by

u;. V; respectively, using the relations
z;' =V;c0s;8;°+ u;sin 9,°, ¥, =V,;sin8° —u;c088,° (3.1)

where V; = const is the longitudinal velocity component of the i th wheel during the
peripheral motion of the vehicle and u; is the transverse displacement velocity of the

i th wheel (its magnitude is of the order of the other small quantities), Inserting (3,1)
into (2,1) and linearizing with respect to the small quantities we obtain the following
kinematic equations for the vehicle on pneumatic tire wheels when the deviations from
its peripheral motion are small:

B HVE +Vig =0
0"+ @' — a;ViE + BV + 7V X =0

The dynamic equations of motion retain, in this case, their form (2, 3).

Similarly to the case of the steady state rectilinear motion, the equations describing
small deviations from the peripheral motion can be simplified when either the velocity
of motion V; , or the values of the kinematic parameters c;, f§; and y; are large,

The case when the velocities of motion are large, In accordance
with the general theory [1] the velocities V; are assumed large if the following

(3.2)
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inequalities hold;
TS 1, (i=1,2,...,m) (3.3)
where T represents the least duration of the transient processes in the variables ¢;, 4,.
-«» @n, and T; is given by

T =2Re[fV,(1 + V1 —"%x/8)

When the motion is curvilinear, the velocities V; should also be bounded from above,
This follows from the assumption that the deformations &;, @; and %; are small,

Assuming that all these conditions hold and carrying out the reasoning analogous to
that of {1] we find, that the region of slow motions is determined by

0 + ¢ +~dn;/ds; =0, %8 = 3 — Ti¥X; — d0; /ds; =0 (3.4)

where T; is a quasi-coordinate corresponding to the variable U; = 7;. Eliminating
E; and Q; from (1 T) and using the relations (3, 4) we ﬁnd

; e — 4y’ — - uit agk G=12...,m (3.5)
b,
Mo = — ——u; — b8/,
] =__b_1.i_ ‘4 b..0 + u; — byi;
Moy v, i+ b0 3iAi

Here the positive coefficients daxiand p,, are connected with the parameters of the
pneumatic tire by the relations

a. a.f. a.yY;
i ii 5 T .
W= mmoo = o8 Tl (3.6)
s.N s, N.B.
i i
bli - d’i y b21 = “4 [ b:h = ( p‘)

Inserting the expressions (3, 5) for the forces and moments into (3,1) we obtain the ex-
pressions for R;.

The case when the kinematic parameters are large, The quantities
& B; and Vi are assumed to be sufficiently large [1] if the inequalities (3, 3) in which
T; is defined by ¢, = (§,V;)~', hold, We introduce a small parameter p such that the
relations

na; = e’ P'Bi = ﬁioy wy; = Vo nQ; = Qe Qi = 6:>)
hold, Here ¢,°, f)f and ¥;° are finite quantities and Q,° are small quantities of the
same order as the small deformations, We write the second group of the kinematic equ-
ations (3, 2) in the form

RO + @) = aViE — BV — 17V ik — QF°

with p sufficiently small, we have a system of differential equations in which the
highest derivative is accompanied by a small parameter, In the present case the varia-
bles undergoing rapid variation are represented by the sums 0;," 4 @;. When p —0,
a surface of slow motions appears in the phase space, This surface is stable with respect
to the rapid motions and

P = %18 — %% — PV 7R (% = ai/Biy %oy = vi/fs) (3.7)
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where %11 and x,, are the transverse creep coefficients, hold for this surface. Using
(3.7) to eliminate ¢; from the first group of the kinematic equations we obtain

u; + &8+ V6 4 %y, Viki — %0 Vs — piiQ; =0 (3.8)
and inserting (3. 7) into (1, 6) we find

F; = a;t; + 0:N %, My, = —o:N:& — 0N i (3.9
My, = %;b0:8: — %1bi%: — by B4V

Thus in the present case when the kinematic parameters have large values, the equations
Af rmarion ara ranracantad hy 79 2) and 712 8) and aynreccione /2 O\ chonld he ueed in
Ui [LIVMIVL alo AV!IICaUIIEU\I Uy (g V] Gl vy U Gl i—APl\'wAvlla \ Ve V) SLiVHAU Vv LW Lse
computing R,

Equations (2. 2), (2.3) and (3, 5) or respectively (2,2), (2.3) and (3, 8), can be regar-~
ded as an extension of the generalized wansverse creep hypothesis [1] to the case of

curvilinear motion,

4, Examples, 1, Stability of peripheral rolling of a pneumatic
tire wheel, We shall consider the case when the angular velocity © of the charact-
eristic rotation of the wheel is kept constant, i.e, when an additional (theonomic)
constraint © = const is imposed on the motion of the wheel, The Lagrangian function

has the form
2L = m(z*2 + y¥) + A(8"2 + X"*) + 20CX0° 4 rNy®

Here N = mgis the weight of the wheel, 4, C are the diametral and axial moments
of inertia,respectively, &, ¢ are the Cartesian coordinates of the center of the wheel, r
is the distance between the center of the wheel and the point X (2, y4), and the coord-

inates of the latter are given by 2, = g— rysind, y, = y + ry cos B (4.1)

Let the generalized forces be Qx = Qy = Q4 = Q, = 0. In accordance with the formulas
(1.6), (2,2) and (4, 1) the generalized forces R; are given by the following expressions
Ry = (af + olNy) 8in 6, Ry = — (a + oNy) cos

Re = b,, By = — (ar + oN)§ — (p + ro)Ny
The dynamic equations of motion of the wheel are
mz” — (at + oNy)sin 6 = 0, my” + (a§ + oNy)cos® = 0 (4.2)
46" 4+ oCy — bp = 0 Ay — oC® + (ar + olN)g — (r— ro— p)Ny = 0
Using (4. 1) let us pass from the variables z* and y' to u and V by means of (3,1),
Discarding the quantities of the second and higher order of smallness we find
z'c0o86° 4y sin0° =V, 2'sinh° —y €0s0° = u 4-ry’
z7c0s0° -y sin@* =0, z"sin0*—y cosO° =u+ry" —~VQ -
where Q = 8% = const is the value of the angular velocity ¢ during the perpheral
motion of the wheel, Instead of (4, 2) we obtain
mu +mryt —mVQ —af —cNy=0, A0+ Cy —bp=0 (4.3)
Ay —oC8 L (ar+N)E—(r—rs~—p) Ny =0
which, together with the kinematic equations
LT VO A V=0, Q40 +¢—alt4pre+yVr=0 (44
form a complete system of equations for determining y, 8, %, £ and ¢. When the wheel
is rolling along a circle of radius R = V/Q = wr/ Q , the steady state values ug, %o.
So and @, (U° = Q1) satisfy the following equations:
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mVQ - afy + oNye=0 Q— aVl+ 7Vy, =0
©CQ — (ar 4 o)y + (r— ro— pINyo = O {43)

The conditions of existence of nontrivial solutions of (4, 5) is fulfilled when the velocity
has a untique value V = V,, where

Vod = gr[a{r —p) 4 a*N] (4:6)

(@Y +acN) (@@ + ) — rN [@ (F — p) — 10}
Here ¢ is the radius of inertia of the wheel,
When V = V¥, , we obtain a set of circular motions of the wheel, The tilt Xg of the

wheel and the lateral deformation & of the nneumatic tite are exnresced in terms of
wheel angd 1ne laleral gelormation g of the pnéumatlic tre are expressed in t€Ims of

the radivs R = V,/ Q of the circumscribed circle by means of the relations

__ RN —my Ve Q (a 4 am Vo?) -
o= Vo(&\'-%-asN} s Xo=— ‘s {aY -+~ e} 4.7y

The numerator in {4, 6) is always positive, The denominator is positive wien ay >a¥V
(1— o).When ay < aV (1 — o) which may happen when the product aiV is large (nor-
mally o= 0.5100.7), the denominator becomes 2ero when r == r,. Since the theory
used here is applicable only when the deformations are
small, we ought to limit ourselves. to the values r <€ ry-
Under these conditions the quantity 3¢ is (as implied by the
assumption of the positiveness of Q and Vo and by (4. 7))
always positive, The quantity y, is (as follows from (4, 7))
always negative, The form assumed by the rolling pneuma-
tic tive wheel is shown on Fig, 2,

To inspect the stability of motion we construct equations
describing small deviations of the wheel from its steady
state motion, Denoting the small deviations by a prime we
obtain from (4, 3) - (4, 5)

mu’" 4 mey'” — a8 - aNy' =0, (4.8)
48"+ oY b =
Ay —~ 00" 4 (ar + ST —{r —rs —p) Ny’ =0
w87+ VO -+ Ve =0,
Fig. 2. 8" 4 @ —~aVE + V@' + 1Vy =0

These equations also describe the small deviations of the wheel from a rectilinear motion,
the latter case regarded here as a particular case of the circular motion, The character-
istic equation of the system (4, 8) can be written as
pP (p) =0 (4.9)
P (p) = p® 4 BVp® + [@g + by =+ (& + 1)xlpd 4 BV (20 + T)P® +
+ (@ods — Bo + T + & )p? + BV (vt — Bolp A Prdo (v — %)
GG = &g + re —— 83, Qy = Gk»g’ T=&3w; Tg == ﬁvﬁg = ﬁﬁﬁl‘x
Bo == age1 1 g3¢, P = Yyk ! 4 oy {kgs— &)
a0 4 ek™}, Y1 = q, +' &y (by — rkby — 1) 4= Yk~ (bo 4 ek~Y)
a b ar 4 oN N (r =75 D)
@ =7r, bo="7, "‘A*"’”‘ A a= A
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The zero root of (4. 9) depends on the manifold of the steady state motions of the pneu~
matic tire wheel, Indeed, the steady state values of the variables in (4, 8) satisfy the

relations
u0'+‘/'60'=0, Eo':Qo'::xo':O

and this implies that the steady state motions form a one-dimensional manifold, Its
physical meaning is reflected in the fact that the motion of the wheel may establish
itself along a straight line in any direction, The stability of the manifold of the recti-
linear motions is determined by the roots of the characteristic equation P (p) = 0. When
v= Vo (i,e. T=T,) , the free term of the polynomial P (p) vanishes, An additional
zero root of the characteristic equation appearing under these conditions is due to the
fact that when Vv = V, , a manifold of circular motions of the pneumatic tire wheel is
generated, The stability of this manifold is determined by the roots of the following
characteristic equation; .
P* + BVop® + [y + by + (@1 + 1) Tolp® 4 BV (2 +To)p? +
+ (aobo — Bo + M1To + T1TePp + BV (YoTo — Po) = 0
The set of circular motions of a pneumatic tire wheel is stable when the following
inequality holds
a1Be* + asPofr + asBs® + b’Fi® > 0 (4.10)
oy = a1 (by + k™) [y (kr— 1) + 1 — vk
ay = (Y1— To) (@e%; + bo + Yo — V1) + &1 (@4Be — 2b¢¥0)
ay = by [ag (ae@y + by + Yo — 72) + 2a1Py — Vobol

For 2 wheel with the following parameters:

N=100kg o= 20m-—2 ¢ = 2-10¢ kg m~!

r=05m B=40m-1 b=10 kgm rad-t

p=04m =4 m- 4=05kgmsec:

o= 0.6 m = 10kg m~lsec? C =1kg m sec’
the inequality (4,10) holds and V, = 2.2 m/sec, Thus the rolling of 2 pneumatic tire
wheel along a circle takes place at a definite velocity V = v,, and the trace of the
middle plane of the wheel is always parallel to the tangent to the circle,

For comparison purposes we shall reconsider this problem using the Rocard’s transverse
creep hypothesis [3], According to this hypothesis the transverse creep acting on the
wheel is accompanied by a transverse opposing force F = —a,V-1u — a.8’, where a,
is the creep resistance coefficient, Using these expressions we arrive at the following
equations of motion for a pneumatic tire wheel

mu - mry  —mVQ +aV-lu+ a8 =0, A" +aCy =0
A —0CO —rNy — agrV=lu — g,r@’ =0

When the motion is steady state, the variables uo and %o are given by

mvV2Q QV (C 4 mr?)
m=—7—, Xo= — = (4.11)

From this it follows that according to the Rocard hypothesis a pneumatic tire wheel can
move along a circle with any velocity ¥, and the trace of the middle plane of the circle
forms a constant angle with the tangent to the circle
mVQ

ac

uo
e = arctg v = arctg

The stability of motion of the wheel is determined by the roots of the characteristic
equation
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A+ mr? CW3 — N A CCH+ mryVie— 3N A
P+ a mAV P+ 7342 P+ a mrav A ~ =0

The motion of a pneumatic tire wheel is stable, when the inequality
Vi> NA/C(C — A) (4.12)

holds, We see that the Rocard hypothesis gives a result which is intrinsically different
from that obtained in accordance with the Keldysh theory, It is interesting to note that
the rolling of a perfectly rigid wheel with classical nonholonomic constraints gives exa-
ctly the same result, In this case the equations of motion have the form

A0” + oCy =0, (A+mr)yy" —o(C +m?)6 —rNy=0

From this it follows that the angle of inclination % of the rigid wheel during its motion

lon, ircle i
along a circle is Yo = — 0@ (C + mrt)rV

which agrees with (4,11), The stability of the manifold of the circular motions of the
wheel is determined by the roots of the characteristic equation ’
A (A 4+ mP)p? 4 @2C (C+ mr)— rNA =0

Consequently the rolling of a rigid wheel is conservatively stable when the inequality
V* > rPNA/C (C + mr*) holds, and the latter inequality differs from (4,12) only in un-
important details,

2, Stability of a circular motion of an automobile, We investig-
ate the motion of the simplest model of an automobile on identical pneumatic tire
wheels, Let replace the wheels by the equivalent front and the near wheel and let the
front wheels be turned to the left by a constant angle . We consider the case of high
velocity motion, since in this case we can use (3, 5) to calculate the forces and the
moments, Using the notation employed in Fig, 3 we obtain the following equations of
motion muy’ - 2a3 uV=l— mli®" — mVQ + 2a:6" — ¢V -0 == — a2

e1V-luy 4+ mh20” 4+ V10 L a1 = (2l — b)Y
¢ = 2ay + apl, ¢ = @y {{y = b) + 2b, ¢ = a3 (lo — 1) + [ (a3ly — b)

where % is the radius of inertia of the automobile relative to the vertical axis passing
through its center of mass, When the automobile moves in a circle, the steady state
values u,° and Q of the variables vy and ¢ satisfy the following equations:

2a5uy° — (¢ - mVHQ = —a, VY, e Uy° + R = (aply — HYVP
which in turn yield
up = MV (a; (asl — 2b) + mV? (aply— b)), @ = a?IMVY (4.13)
Here
/¢ M = [a?B 4 4a.b L cym VE]™ (4.14)

Using (4, 13) and the obvious relations us =
= u, — 16" 4 V¥, we readily obtain

u® = MV [ay (2l + 2b) + mV? a)ply + B)]
Let @ >0and V >0, Then the second re -
lation of (4, 13) implies that the inequality
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M4 > 0 must hold, Thus two cases of motion of an automobile in a circle are possible,
(a) M >0, v >0 when we have the usual motion illustrated on Fig, 4a,
(b) M <0, $< 0 when we have the extraordinary motion depicted on Fig, 4b,

Fig, 4.

In the latter case the front wheels are turned in the direction opposite to that in which
the automobile is turning (the possibility of such a motion of an automobile in a circle
was found by A, A, Khachaturov in computation using an analog computer), By (4. 14),
this case arises when the inequalities

2% . a2l 4 4daxb R
12>11+—a'2—’ ! >m[a~z(l2—11)—'2b]=‘-*

are satisfied. The center of mass of the automobile is displaced towards the rear wheels
and the velocity of motion exceeds some critical value V = V,.

The stability of the manifold of motions of an automobile along a circle is determined
by the roots of the characteristic equation m#°p* 4 m (Zah* + eyl, + ¢o) p + M = 0.
Since the coefficients accompanying p are always positive, the motion of the automo-
bile is stable wher M > 0. Consequently the usual mode of motion of an automobile with
a blocked steering along a circle is always stable, and the extraordinary mode is always
unstable,

In conclusion we note that the study of the motions of the model under consideration
using the Rocard transverse creep hypothesis yields the same qualitative result, This can
be explained by the fact that, while in the first example the moment of the forces ari-
sing from the torsion of the pneumatic tire during the rolling of a single pneumatic tire
wheel is significant, in the second example the corresponding moments acting on the
front and rear wheels do not influence the dynamics of the automobile to any appreciable
extent,
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